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ABSTRACT
As bugs are inevitable and prevalent in real-world programs, many
Automated Program Repair (APR) techniques have been proposed
to generate patches for them. However, due to the lack of a standard
for evaluating APR techniques, prior works tend to use different
settings and benchmarks in evaluation, threatening the trustwor-
thiness of the evaluation results. Additionally, they typically only
adopt plausibility and genuineness as evaluation metrics, which
may potentially mask some underlying issues in APR techniques.

To overcome these issues, in this paper, we conduct an exten-
sive and multi-dimensional evaluation of nine learning-based and
three traditional state-of-the-art APR techniques under the same
environment and settings. We employ the widely studied Defects4J
V2.0.0 benchmark and a newly constructed large-scale mutation-
based benchmark named MuBench, derived from Defects4J and
including 1,700 artificial bugs generated by various mutators, to
uncover potential limitations in these APR techniques. We also
apply multi-dimensional metrics, including compilability/plausibili-
ty/genuineness metrics, as well as SYE (SYntactic Equivalence) and
TCE (Trivial Compiler Equivalence) metrics, to thoroughly analyze
the 1,814,652 generated patches.

This paper presents noteworthy findings from the extensive eval-
uation: Firstly, Large Language Model (LLM) based APR demon-
strates less susceptibility to overfitting on the Defects4J V1.2.0
dataset and fixes the most number of bugs. Secondly, the study
suggests a promising future for combining traditional and learning-
based APR techniques, as they exhibit complementary advantages
in fixing different types of bugs. Additionally, this work highlights
the necessity for further enhancing patch compilability of learning-
based APR techniques, despite the presence of various existing
strategies attempting to improve it. The study also reveals other
guidelines for enhancing APR techniques, including the need for
handling unresolvable symbol compilability issues and reducing
duplicate/no-op patch generation. Finally, our study uncovers seven
implementation issues in the studied techniques, with five of them
confirmed and fixed by the corresponding authors.
∗The first two authors contributed equally to this work.
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1 INTRODUCTION
Bugs are prevalent and inevitable in modern software systems.
To help developers fix bugs more efficiently, Automated Program
Repair (APR) techniques are proposed to repair bugs automatically.
Recently, many APR techniques have been proposed [14, 18, 29, 55,
61] and attracted huge attention from both industry and academia.
For example, SapFix [32] has been deployed in Meta’s debugging
pipeline, benefiting products used by millions of users.

The Generate and Validate (G&V) APR [34] represents a pop-
ular set of APR techniques that involve validating the generated
candidate patches, e.g., by leveraging the program’s formal specifi-
cations [28, 42]. However, as such formal specifications are usually
not available, the most common way to validate the patches is
to execute the whole test suite. In this context, the inputs for the
APR techniques include a buggy program, the test suite, and the
suspicious buggy locations. Their output consists of a set of patch
candidates that could potentially fix the buggy program. After ob-
taining the patch candidates, test suites are executed to identify
plausible patches (i.e., patches that pass the entire test suite), fol-
lowed by manual inspection to determine the genuine patches (i.e.,
the patches that are actually correct).

To evaluate the APR techniques, many real-world bug datasets
have been proposed, such as Bears [31], Bugs.jar [44], QuixBugs [22]
and Defects4J [20]. As themost commonly used benchmark for APR,
Defects4J consists of 800+ real bugs extracted from bug-tracking
systems in its newest version V2.0.0, along with corresponding
developer patches, executable test suites, and bug reports. Addi-
tionally, Defects4J provides a database abstraction layer featuring
multiple useful APIs to check out buggy/fixed versions of programs,
execute tests, collect coverage statistics, etc.

Although real-world bug datasets are frequently used to eval-
uate APR techniques, it is commonly observed that researchers,
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when evaluating an APR technique, tend not to re-execute base-
line techniques on the adopted benchmarks. Instead, they often
reference results directly from the original publications of these
baselines. Consequently, there are many issues in the evaluation
of the state-of-the-art APR techniques: (1) The prevailing practice
of referencing results from antecedent publications imposes sig-
nificant constraints on the choice of benchmarks for comparative
analyses, which can potentially compromise the scale and trust-
worthiness of evaluations. For example, the technique TBar [24] is
exclusively assessed on Defects4J V1.2.0 in its original work. As a
result, any attempt to compare a new technique with TBar, with-
out re-executing TBar, is compelled to solely rely on evaluations
conducted on Defects4J V1.2.0. However, prior research [12, 14, 59]
has shown that many APR techniques are susceptible to overfitting
on Defects4J V1.2.0. (2) They are usually evaluated and compared
under different settings. For example, CoCoNut [29] uses a candi-
date size of 1000 to generate patches, while SequenceR [8] only
uses 50 as the candidate size. (3) They are mainly evaluated with
the metrics of plausibility and genuineness and lack comparisons
and analyses in terms of other dimensions. For example, many
APR techniques (e.g., [66], [11], [49]) do not perform compilability
analyses on their generated patches, which may fail to fully study
the potentials and limitations of corresponding techniques. In this
work, we not only evaluate the compilability of the studied APR
techniques, but also analyze the categories of compilation errors,
and the prevalence of duplicate/no-op patches (i.e., patches that are
syntactically equivalent to the original buggy code). (4) They rarely
compare APR techniques on the same machine/environment.

This work presents a comprehensive evaluation of nine learning-
based and three traditional APR techniques across multiple bench-
marks and metrics under consistent environment and settings, aim-
ing to address potential shortcomings in their original assessments
and pinpoint avenues for enhancement. In our study, we assess
these APR techniques across two distinct benchmarks: the Defects4J
V2.0.0 benchmark and a mutation-based benchmark, MuBench,
which comprises 1,700 synthetic bugs derived from programs in
the Defects4J benchmark. We measure performance across multiple
dimensions, including the total number of generated, compilable,
plausible, and genuine patches, and the number of bugs with compi-
lable, plausible, and genuine patches. To evaluate the performance
of the studied APR techniques on the large MuBench benchmark,
where it is too costly to inspect all plausible patches manually, we
also employ the metrics of SYntactically Equivalent (SYE) patches
(i.e., patches that are syntactically equivalent to the developer’s
patch) and Trivial Compiler Equivalent (TCE) patches (i.e., patches
that are equivalent to the developer’s patch after compilation) to
approximate the genuineness metrics.

To glean insights across various facets, we conductmulti-dimensional
analyses during the evaluation. For instance, we divide the Defects4J
bugs into Defects4J V1.2.0 bugs dataset and Defects4J V2.0.0 ad-
ditional bugs dataset to investigate the overfitting issue. We also
analyze the correlation between compilability/plausibility/SYE/TCE
metrics and genuineness metrics. Additionally, the performance
of the studied APR techniques on the mutation-based MuBench
benchmark across different mutators is assessed. Moreover, we an-
alyze the compilation error categories of uncompilable patches and
statistics of duplicate/no-op patches for each APR technique.

Our evaluations yield several key findings: First, traditional and
Neural Machine Translation (NMT) based APR techniques tend
to overfit on the widely studied Defects4J V1.2.0 dataset, while
the Large Language Model (LLM) based one suffers less from the
overfitting issue and can fix the most number of bugs. Second,
learning-based and traditional APR techniques are better at fixing
different types of bugs, demonstrating a promising future for com-
bining learning-based and traditional APR techniques. Third, when
comparing different APR techniques, the number of bugs with SYE,
TCE, or plausible patches highly correlates with the number of bugs
with genuine patches, establishing TCE as a cost-efficient metric
for APR evaluations since it performs better than SYE and is less
costly to compute than plausibility metric. Next, although some
of the learning-based APR techniques adopt special strategies to
improve patch compilability, their highest compilability rates still
fall short of the template-based technique by approximately 20 per-
centage points, indicating that learning-based techniques still have
room for improvement in enhancing patch compilability. Moreover,
our study also reveals various guidelines for improving APR tech-
niques, e.g., many APR techniques may generate large numbers of
duplicate/no-op patches, suggesting future implementations should
develop strategies to reduce such patches and improve APR effi-
ciency and reliability. Lastly, our study leads to the detection of
seven implementation issues in the studied techniques (five have
been confirmed and fixed by the authors).

To sum up, our work makes the following contributions:

• Multiple benchmarks for evaluation. Apart from the De-
fects4J benchmark widely used in prior works, we also adopt
a newly constructed large-scale mutation-based benchmark
named MuBench, containing 1,700 bugs for evaluation.

• Extensive evaluation. We comprehensively evaluate nine
learning-based and three traditional state-of-the-art APR
techniques under uniform experimental settings on the same
machine. We analyze a total of 1,814,652 generated patches
to mitigate threats of biased evaluation results.

• Multi-dimensionalmetrics for evaluation. Extending be-
yond prior works, we incorporate various metrics of different
aspects, i.e., compilability/plausibility/genuineness/SYE/TCE
metrics, where SYE/TCE metrics have been understudied by
existing APR research to the best of our knowledge.

• Valuable guidelines for future APR research. Our study
analyzes the performance of these state-of-the-art APR tech-
niques in multiple dimensions, uncovering many findings
that are discussed at length. By identifying potential direc-
tions for improving these techniques, our research provides
valuable guidelines for future APR research.

• Reproducible artifact. We have open-sourced the data,
code, and details of all uncovered bugs from our study at [3].

2 BACKGROUND AND RELATEDWORK
2.1 Automated Program Repair
Automated Program Repair (APR) [7, 10, 13, 15, 16, 26, 27, 33, 35,
36, 51, 58] aims to automatically generate patches to fix bugs,
thereby reducing developers’ debugging burden. Traditional APR



Benchmarking Automated Program Repair: An Extensive Study on Both Real-World and Artificial Bugs ISSTA ’24, September 16–20, 2024, Vienna, Austria

techniques can be mainly categorized into three types: (1) heuristic-
based techniques, where heuristic strategies such as genetic pro-
gramming [21] and random search [43, 53] are leveraged to guide
the search of potentially correct patches, (2) template-based tech-
niques, where fix patterns summarized by experts or mined from
large projects are applied to buggy programs to generate candidate
patches [14, 24] and (3) constraint-based techniques, where sym-
bolic execution and constraint solving techniques are leveraged to
extract semantic information for better patch generation [57]. Out
of the traditional APR techniques, template-based ones have been
shown to be the most effective [14], but they cannot fix bugs that are
beyond the scope of their templates. To tackle this issue, NMT-based
techniques [18, 29, 49, 62] are proposed, treating APR as a trans-
lation task to translate faulty code to correct code. Nevertheless,
their effectiveness is heavily dependent on the quality of the bug-
fix training datasets. More recently, LLM-based techniques have
emerged [17, 52, 54–56, 64], showing superior performance over
traditional and NMT-based techniques by leveraging pre-trained
large language models.

In recent years, numerous empirical studies have been conducted
to evaluate APR techniques. Liu et al. [25] systematically evaluated
16 Java APR techniques with a focus on their efficiency. Zhong et
al. [65] performed an empirical study on six state-of-the-art NPR
(Neural Program Repair) systems. They built a new benchmark for
NPR systems and ran experiments to investigate their repairability,
inclination, and generalizability. However, the prior studies [25, 65]
were performed under the early-exit mechanism, i.e., terminating
patch validation/generation upon discovering the first plausible
patch, thereby missing a lot of potentially plausible/correct patches
in the patch space. Noller et al. [37] performed a small-scale eval-
uation to showcase that different experimental setups can lead to
different repair performances, underscoring the importance of fair
comparisons under uniform experimental settings. Shariffdeen et
al. [46] designed a fully agnostic repair platform integrating 20
APR tools and nine APR benchmarks across multiple target lan-
guages and application domains. However, they only included two
learning-based tools, missing the majority of the recent state-of-the-
art learning-based tools. Ye et al. [60] performed an empirical study
of ten traditional APR techniques on the QuixBugs benchmark [22]
and found 53.3% of the generated plausible patches were overfitting.
Different from previous works, our study evaluates both learning-
based and traditional APR techniques, not only on the commonly
used Defects4J V2.0.0 benchmark but also on the mutation-based
MuBench benchmark, with multi-dimensional metrics (SYE and
TCE metrics have never been used for APR evaluation) to perform
thorough and multi-dimensional analyses, with the aim of inspiring
better APR research.

2.2 Mutation Testing and Bug Injection
Mutation testing aims to deliberately inject bugs into programs by
mutating source code to measure the adequacy of the test suite.
In the mutation testing context, a mutant, defined as a mutated
program variant with an introduced bug, is considered “killed” if
it yields different outputs from the original program during test
executions. The mutation score is the metric of the effectiveness of
the test suite, referring to the ratio of the killed mutants out of all

Table 1: Defects4J projects utilized by MuBench
Project ID Project Name LoC # Tests # Seeds # Mutants
Chart-1 JFreeChart 96382 2193 70 81006
Cli-1 Apcache commons-cli 1937 94 12 1118

Closure-1 Google Closure compiler 90697 7911 67 52384
Codec-1 Apache commons-codec 2584 206 11 4408

Collections-25 Apache commons-collections 26415 15393 45 11899
Compress-1 Apache commons-compress 6741 73 25 11054

Csv-1 Apache commons-csv 806 54 7 695
Gson-1 Google GSON 5418 720 29 2295

JacksonCore-1 Google Guava 15882 206 19 16982
JacksonDatabind-1 Jackson data bindings 42965 1098 56 14810

JacksonXml-1 Jackson XML extensions 4683 138 18 2209
Jsoup-1 Jsoup HTML parser 2546 139 13 1511
JxPath-1 Apache commons-jxpath 19373 308 34 19278
Lang-1 Apache commons-lang 21787 2291 31 22793
Math-1 Apache commons-math 84323 4378 61 121346

Mockito-13 Mockito framework 7289 946 48 2231
Time-1 Joda-Time 27801 4041 46 20257

Table 2: Mutators used by MuBench
Mutator Description Example
AOR Arithmetic Operator Replacement 𝑎 + 𝑏 → 𝑎 − 𝑏

COR Conditional Expression Replacement 𝑎 | | 𝑏 → 𝑎

LOR Bitwise Operator Replacement 𝑎 ^ 𝑏 → 𝑎 | 𝑏
LVR Literal Value Replacement 1 → −1
ORU Operator Replacement Unary −𝑎 → ∼ 𝑎

ROR Relational Operator Replacement 𝑎 == 𝑏 → 𝑎 >= 𝑏

SOR Shift Operator Replacement 𝑎 >> 𝑏 → 𝑎 << 𝑏

generated mutants. Mutation testing techniques have been used in
both academia and industry, e.g., Pitest [9] and Major [19]. Ma et
al. [30] proposed to reduce the execution cost of mutation testing
for object-oriented programs by using Mutant Schemata Genera-
tion (MSG) and bytecode translation. Schuler et al. [45] proposed
Javalanche that ranks mutations by their impact on the behavior of
program functions to enable efficient mutation testing. Brown et
al. [4] proposed the wild-caught mutants technique to enhance
mutation testing by generating potential faults more closely related
to changes made by programmers. Zhang et al. [63] proposed pre-
dictive mutation testing, using a classification model based on a
series of features related to mutants and tests to predict whether a
mutant would be killed or remain alive without executing it. More
recently, DeepMutation [48] was proposed to automatically learn
mutants from software repositories for better mutant generation
using NMT. Patra et al. [40] proposed SemSeed, a technique that can
automatically seed bugs in a semantics-aware way. Zhao et al. [47]
introduced LEAM, a syntax-guided mutation process leveraging
neural program generation, demonstrating superior performance
in mutation testing and related tasks such as test case prioritization
and fault localization.

In addition to mutation testing, mutation bug injection tech-
niques have been used in various areas including fault localiza-
tion [39], fuzzing [50], and program repair [14]. Ye et al. [61] pro-
posed to use bug injection to build a training dataset for learning-
based APR. Meanwhile, there is limited prior work on leveraging
mutation bug injection for extensive APR evaluation to the best of
our knowledge.

3 STUDY DESIGN
3.1 Benchmark Construction
3.1.1 Defects4J Benchmark. To ensure a fair comparison among
the state-of-the-art APR techniques, following prior studies [8, 54,
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Table 3: State-of-the-art APR techniques evaluated in this work.
APR technique Training source # Training Instance Features
Recoder [66] Java projects between 2011 and 2018 on GitHub 82,868 syntax-guided edit decoder, placeholder generation
SelfAPR [61] the perturbation bugs of subject projects 1,039,873 self-supervised training with error diagnostics

RewardRepair [62] CoCoNut, Megadiff, CodRep and Bears 3,507,394 combination of syntactic training and semantic training
Tufano2 [49] BFP: commits between 2010 and 2017 on GitHub 46,680 + 52,364 NMT-based, code-abstraction
Sequencer [8] original source of BFP 35,578 sequence to sequence learning
CoCoNut [29] commits before 2010 on GitHub, projects from GitLab and Bitbucket 3,241,966 ensemble learning, CNN, context aware NMT
CURE [18] commits before 2010 on GitHub, projects from GitLab and Bitbucket 4,040,000 NMT-based, code-aware search, BPE tokenization
Edits [11] 10,235 most-starred Java repositories on GitHub 55,000 transplanted NMT model

AlphaRepair [55] - - cloze-style APR based on zero-shot large language models
TBar [24] - - template-based technique with widely-used templates
SimFix [16] - - using existing patches and similar code as donor code
PraPR [14] - - template-based, bytecode transformation

*TBar, SimFix and PraPR are traditional APR techniques while the others are learning-based APR techniques. AlphaRepair is based on pre-trained LLMs and thus has no extra bug training dataset.

55], we use all of the 140 single-line bugs (bugs that can be fixed
with a single-line modification) in the Defects4J V2.0.0 benchmark,
as many techniques can only accept a single line of buggy code
(e.g., SequenceR and AlphaRepair). Moreover, single-line bugs can
provide clearer insights into the limitations of APR techniques since
they are easier and often expected to be fixed.

3.1.2 MuBench Benchmark. Although previous works have shown
that the existing APR techniques can fix a lot of bugs on real-world
bug datasets (e.g., AlphaRepair [55] can fix 74 out of 395 bugs in
Defects4J V1.2.0), it remains unclear whether these APR techniques
can handle very simple bugs, which they ought to be able to fix
for practical utility. In order to investigate this problem, we build
a mutation-based benchmark named MuBench consisting of 1,700
simple artificial bugs generated by a variety of mutators.

Mutation seeds. We leverage the correct versions of programs
in Defects4J V2.0.0 as the seeds and perform mutation to inject
artificial bugs. As Defects4J V2.0.0 bugs are collected from 17 open-
source projects, we randomly select Java source files from the fixed
versions of the first non-deprecated bug IDs across all projects as
the mutation seeds. After excluding files unsuitable for any mutator
application, 592 Java source files were left to be mutation seeds.
Note that the same Java source file can result in different mutated
bugs. Table 1 shows the Defects4J fixed version of projects where
we sample the seeds, as well as their project names, lines of code
(LoC), the number of tests in the test suite, the number of seed Java
files, and the number of mutants generated as artificial bugs.

Mutants generation. We employ the Major [19] mutation test-
ing framework to mutate the seed programs. For each project, we
run Major with all 7 mutators1 in Table 2 enabled and execute
the test suite for each mutant to check whether the mutants are
killed (i.e., failing any test). In this study, we have limited our scope
to include only these 7 mutators to focus on assessing the ability
of studied techniques to fix relatively simple bugs. We leave the
evaluation of more complex mutation bugs for future research.

Mutants filtering. Among the generated mutants, we use sev-
eral filtering rules to filter out unsuitable mutants. Specifically, we
exclude (1) mutants with multi-line code modifications (aligning
with APR tools that can only handle one line of buggy code); (2)
uncompilable mutants; (3) mutants that pass all tests.

1The STD (Statement Deletion) mutator is excluded because it is typically hard for
APR tools to restore a deleted statement, and the majority of studied tools only support
replacement fixes.

Ultimately, we uniformly sample 100 mutants for each project
from the remaining mutants, resulting in a total of 1,700 simple
artificial bugs for the MuBench benchmark.

3.2 Subject APR Techniques
As learning-based APR techniques have been shown to have great
potential, we follow a recent empirical study [65] on learning-based
APR techniques to include Recoder [66], Edits [11], CoCoNut [29],
Tufano [49], SequenceR [8] and CURE [18] as study subjects, but
we do not include CODIT [5] due to the absence of preprocessing
scripts. Additionally, we include some latest learning-based APR
techniques published in top conferences, namely RewardRepair [62],
SelfAPR [61], and AlphaRepair [55] (we use the CodeT5 version
as recommended by the authors). For traditional APR techniques,
we select SimFix [16], PraPR [14], and TBar [24] as they have
demonstrated state-of-the-art performance. In total, we include
nine learning-based and three traditional APR techniques, detailed
information of which can be found in Table 3.

To ensure a fair comparison, we set the candidate number of
learning-based techniques to 100. But for traditional APR tech-
niques, we let them exhaustively generate patches in a 5-hour time
limit because of the following reasons: (1) Compared to the patch
generation speed of learning-based techniques, some of them can
be slow (e.g., SimFix), thus it may take a very long time to generate
100 patches for each bug. (2) Some of the traditional APR techniques
can not generate 100 patches due to their limited search space. (3)
5 hours is the time limit used by SimFix to generate patches. In
addition, we conduct all experiments in the perfect fault localization
setting (i.e., all faulty locations are assumed to be known to the
APR techniques) following prior works [18, 54, 65]. Such a setting
is adopted to eliminate the noises brought by inaccurate fault local-
ization results [23, 25], thereby directly revealing the limitations
in the repair capabilities of the studied APR techniques. For all
other settings (e.g., context size, model temperature), we maintain
consistency with the corresponding original works.

3.3 Patch Assessment
After obtaining the candidate patches, we leverage the on-the-fly
patch validation tool UniAPR [6] to execute the test suites for
each patch to reduce the cost of patch validation. Note that we

2We follow the previous work [65] to name this technique.
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follow the recent work [59] to validate all patches without the early-
exit mechanism. Once UniAPR identifies all the plausible patches,
we further perform patch correctness checking. For the patches
generated on the Defects4J benchmark, we involve two authors
with over three years of Java development experience to manually
check the patch correctness: initially, they independently label each
plausible patch; then they convene to resolve any disagreements
until consensus is achieved. However, for the MuBench benchmark,
given the large number of plausible patches, we use the TCE/SYE
metrics to approximate the genuineness metrics, as detailed in
Section 3.4.

3.4 Metrics
Our evaluation of APR techniques extends beyond the conventional
plausibility and genuineness metrics to include the metrics of total
patches and compilable patches, enabling more comprehensive
analyses. Notably, we have also employed the SYE and TCE metrics
to approximate the genuineness metrics, mitigating the high costs
of patch validation and manual patch correctness checking in our
large-scale APR evaluation.

In evaluating APR techniques, many APR works [55, 61, 62] tend
to directly reuse the results presented in the original works of com-
parison baselines, rather than re-executing the baselines themselves.
Consequently, comparisons are often made under different settings,
e.g., numbers of candidate patches, posing a threat to the fairness
of evaluation. Although often neglected, the number of generated
patches and the compilable patches are two very important metrics
in APR evaluation, as the former ensures evaluation fairness and
the latter reflects the robustness and efficacy of the techniques.

Furthermore, the SYE patches refer to the patches that are syntac-
tically equivalent to the developer’s patch, i.e., the patched program
has the same token list as the fixed program after tokenization. On
the other hand, the TCE patches refer to the patches that are trivial
compiler equivalent [38] to the developer’s patch, i.e., making the
patched program have the identical bytecode instructions as the
fixed program after compilation. Based on the definitions, it is clear
that TCE and SYE patches are all semantically equivalent to the
developer’s patches, i.e., they are all genuine patches, but not all
genuine patches are TCE or SYE patches. Additionally, because
syntactically different source files can be compiled into equivalent
bytecode files, and syntactically equivalent source files must be
compiled into the equivalent bytecode files, the set of SYE patches
is a proper subset of the set of TCE patches. In summary, the rela-
tionships between adopted metrics can be depicted in Figure 1.

Figure 1: Metrics rela-
tionship illustration

To identify SYE patches, we
use a Java tokenizer generated by
ANTLR [1] to compare the tok-
enization results of the compiled
patched programs and the com-
piled human-fixed programs. To
identify TCE patches, we use the
bytecode analysis tool ASM [2]
to compare the meta-information
(e.g., class members, method sig-
natures) and instructions of the
bytecode files of the patched and

the human-fixed programs after compilation. We deliberately ex-
clude the debugging information from the bytecode files to perform
a more accurate comparison. Additionally, for the 648 TCE and 500
SYE patches identified by the aforementioned approach among the
patches generated for the Defects4J bugs, we manually checked
them against the developer’s patches and found no false positives.

In summary, our study primarily adopts the following metrics:
• Compilability Metric: A patch is compilable if the patched
program can be compiled successfully.

• Plausibility Metric: A patch is plausible if it can success-
fully pass the test suite.

• Genuineness Metric: A patch is genuine if it is both plau-
sible and semantically equivalent to the developer’s patch.

• SYE Metric: A patch is SYE (SYntactically Equivalent) if,
after tokenization, it shares the same list of tokens as the
developer’s patch.

• TCE Metric: A patch is TCE (Trivial Compiler Equivalent)
if it has equivalent compiled bytecode compared with the
developer’s patch.

3.5 Research Questions
(1) RQ1. How do the studied APR techniques perform on the

Defects4J V2.0.0 single-line bugs? This RQ seeks to evaluate
the efficacy of the studied techniques on single-line bugs in the
Defects4J V2.0.0 benchmark under unified settings, employing
multi-dimensional metrics to uncover potential shortcomings
and strengths inherent to the studied APR techniques. Addi-
tionally, we compare the results on different Defects4J versions
and examine the correlation between various metrics and the
genuineness metrics to enrich our insights.

(2) RQ2. How do the studied APR techniques perform on
the mutation-based MuBench benchmark? Similar to RQ1,
RQ2 aims to evaluate the performance of the studied techniques
on the MuBench benchmark consisting of 1,700 simple muta-
tion bugs. We also investigate the performance of the studied
APR techniques in terms of different mutators to uncover their
potential shortcomings and strengths.

(3) RQ3. What insights can lead to better program repair?
This RQ aims to discuss additional insights into the performance
of the studied APR techniques emerging from our multifaceted
analyses of the evaluation, which enable us to identify poten-
tial areas for improvement and provide insightful guidance to
enhance APR techniques.

4 RESULT AND ANALYSIS
4.1 RQ1: Performance on Defects4J V2.0.0 bugs
4.1.1 Overall Results. The overall results of the performance of
each APR technique are shown in Table 4. Note that PraPR does not
have data for compilability and SYE metrics because it generates
patches at the bytecode level. Besides, not all tools can generate
100 patches for each bug. For traditional tools they cannot generate
100 patches per bug due to limited search space or low efficiency.
For learning-based tools, they may fail to generate 100 patches for
some bugs for intrinsic limitations, e.g., Recoder could crash on
some bugs (see Section 4.3.3), and some of them would filter out
invalid patches in the post-processing phase (e.g., SequenceR).
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Table 4: The performance of APR techniques on Defects4J single-line bugs
Metrics Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR
# Total Patches 8768 14000 13439 14000 10181 12900 13900 13300 13300 10529 11499 1577

# Compilable Patches 2795 (31.88%) 5669 (40.49%) 3730 (27.76%) 4939 (35.28%) 2561 (25.15%) 2882 (22.34%) 3652 (26.27%) 291 (2.19%) 1427 (10.73%) 6439 (61.15%) 2699 (23.47%) N/A
# Plausible Patches 172 (1.96%) 658 (4.70%) 584 (4.35%) 600 (4.29%) 270 (2.65%) 245 (1.90%) 311 (2.24%) 22 (0.17%) 46 (0.35%) 364 (3.46%) 318 (2.77%) 123 (7.80%)

# Bugs w/ Compilable Patches 125 (89.29%) 135 (96.43%) 128 (91.43%) 136 (97.14%) 106 (75.71%) 117 (83.57%) 126 (90.00%) 47 (33.57%) 76 (54.29%) 128 (91.43%) 89 (63.57%) N/A
# Bugs w/ Plausible Patches 56 (40.00%) 67 (47.86%) 73 (52.14%) 70 (50.00%) 44 (31.43%) 31 (22.14%) 52 (37.14%) 9 (6.43%) 17 (12.14%) 65 (46.43%) 26 (18.57%) 54 (38.57%)

# Genuine Patches 47 (0.54%) 263 (1.88%) 152 (1.13%) 162 (1.16%) 55 (0.54%) 65 (0.50%) 55 (0.40%) 7 (0.05%) 6 (0.05%) 52 (0.49%) 18 (0.16%) 37 (2.35%)
# TCE Patches 39 (0.44%) 245 (1.75%) 72 (0.54%) 116 (0.83%) 33 (0.32%) 22 (0.17%) 35 (0.25%) 7 (0.05%) 5 (0.04%) 37 (0.35%) 17 (0.15%) 20 (1.27%)
# SYE Patches 19 (0.22%) 231 (1.65%) 45 (0.33%) 85 (0.61%) 17 (0.17%) 19 (0.15%) 26 (0.19%) 5 (0.04%) 3 (0.02%) 34 (0.32%) 16 (0.14%) N/A

# Bugs w/ Genuine Patches 40 (28.57%) 40 (28.57%) 50 (35.71%) 45 (32.14%) 27 (19.29%) 17 (12.14%) 31 (22.14%) 6 (4.29%) 6 (4.29%) 40 (28.57%) 17 (12.14%) 37 (26.43%)
# Bugs w/ TCE Patches 38 (27.14%) 35 (25.00%) 48 (34.29%) 44 (31.43%) 26 (18.57%) 15 (10.71%) 27 (19.29%) 6 (4.29%) 5 (3.57%) 36 (25.71%) 17 (12.14%) 20 (14.29%)
# Bugs w/ SYE Patches 19 (13.57%) 33 (23.57%) 45 (32.14%) 41 (29.29%) 17 (12.14%) 15 (10.71%) 26 (18.57%) 5 (3.57%) 3 (2.14%) 34 (24.29%) 16 (11.43%) N/A

*The percentages in the parentheses denote the ratio of the number of corresponding patches to the total number of generated patches for the # Compilable/Plausible/Genuine/TCE/SYE Patches metrics and
the ratio of the number of bugs with corresponding patches to the total number of bugs, for # Bugs w/ * Patches. The largest/highest number/ratio in each row is highlighted in bold font.

Table 5: The performance of APR techniques on different versions of Defects4J bugs
Metrics Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR

# Genuine Patches
V1.2.0 36 (0.75%) 210 (2.76%) 61 (0.84%) 125 (1.64%) 33 (0.59%) 45 (0.63%) 32 (0.43%) 2 (0.03%) 2 (0.03%) 41 (0.87%) 14 (0.19%) 28 (3.14%)
V2.0.0 11 (0.28%) 53 (0.83%) 91 (1.48%) 37 (0.58%) 22 (0.48%) 20 (0.35%) 23 (0.36%) 5 (0.08%) 4 (0.07%) 11 (0.19%) 4 (0.14%) 9 (1.31%)

Ratio Change -63.36% -70.03% +77.18% -64.85% -17.59% -43.86% -15.77% +213.56% +150.85% -77.94% -27.64% -58.25%

# Bugs w/ Genuine Patches
V1.2.0 32 (42.11%) 31 (40.79%) 29 (38.16%) 30 (39.47%) 18 (23.68%) 10 (13.16%) 21 (27.63%) 2 (2.63%) 2 (2.63%) 32 (42.11%) 14 (18.42%) 28 (36.84%)
V2.0.0 8 (12.50%) 9 (14.06%) 21 (32.81%) 15 (23.44%) 9 (14.06%) 7 (10.94%) 10 (15.63%) 4 (6.25%) 4 (6.25%) 8 (12.50%) 2 (3.13%) 9 (14.06%)

Ratio Change -70.31% -65.52% -14.01% -40.63% -40.63% -16.88% -43.45% +137.50% +137.50% -70.31% -83.04% -61.83%

*The percentages in parentheses for # Genuine Patches represent the ratio of the number of patches to the total number of generated patches. The percentages in parentheses for # Bugs w/ Genuine Patches
represent the ratio of the number of bugs to the total number of bugs. Rows of Ratio Change indicate the percentages of the ratio decrease, with negative percentages highlighted in bold font.

Table 4 demonstrates that TBar achieves the highest number/ra-
tio (6439/61.15%) of compilable patches, which is 20.66 percentage
points (pp) higher than the second-best (SelfAPR, 5669/40.49%).
However, despite the high compilability rate, TBar fixes fewer bugs
than AlphaRepair and RewardRepair, suggesting that their effective-
ness can compensate for the shortcomings in compilability. The re-
sults indicate that while some learning-based APR techniques have
demonstrated better effectiveness, they still fall short of template-
based APR techniques in producing compilable patches.

Moreover, SelfAPR performs the best in terms of the total number
of plausible/genuine/TCE/SYE patches (658/263/245/231). However,
such high numbers of patches do not necessarily lead to the highest
number of bugs being correctly fixed, which is the key metric for
practical applications of APR techniques. Although AlphaRepair
has fewer plausible/genuine/TCE/SYE patches than SelfAPR, it
attains the highest number of bugswith plausible/genuine/TCE/SYE
patches, thus being the most effective APR tool among all studied
APR techniques. After further looking into the patches generated
by SelfAPR, we find that its good performance in the number of
plausible/genuine/TCE/SYE patches is mainly caused by the high
duplication rate of its generated patches (discussed in Section 4.3.2).

It is important to note that, while many of the learning-based
APR techniques claim superiority over traditional APR techniques,
our uniform experimental settings reveal a different narrative. Among
the learning-based APR techniques, only AlphaRepair and Reward-
Repair can surpass TBar in terms of the number of bugs with gen-
uine patches, contradicting the findings reported in many of their
respective works (e.g., [66], [61] and [18]). Some learning-based
APR techniques, including RewardRepair, SelfAPR, and CURE, di-
rectly compare their results with TBar’s results in the work of TBar,
neglecting the fact that TBar’s assessment utilized the early-exit
mechanism [24] distinct from their own. Such a mechanism, which
terminates patch generation and validation once a plausible patch is
identified for a bug, can lead to a potential undercount of plausible
and genuine patches. We have deactivated this mechanism in our
study to ensure a fair evaluation.

The contrasting results underline the importance of uniform
experimental settings (e.g., patch candidate numbers and patch gen-
eration mechanisms) in evaluating APR techniques. We recommend
researchers either execute APR techniques with the same experi-
mental settings as prior works or rerun baseline APR techniques
under uniform settings to ensure equitable evaluations.

Finding 1: On the Defects4J benchmark, the LLM-based
APR can correctly fix the most bugs while none of the
learning-based tools can outperform traditional template-
based TBar regarding compilability rate. In uniform settings,
some NMT-based tools can not outperform TBar in bug
fixing, highlighting the importance of equitable APR evalu-
ations.

4.1.2 Performance in Different Defects4J Versions. As some APR
techniques have only been evaluated on Defects4J V1.2.0, there are
concerns about overfitting (i.e., the results may fail to generalize
effectively to other datasets). It would be interesting to see how the
results change on different benchmark versions[12, 14]. Specifically,
we have divided the bugs in Defects4J into two datasets. The first
with 76 bugs from Defects4J V1.2.0 projects, and the second with
64 additional bugs from Defects4J V2.0.0 projects, referred to as the
Defects4J V2.0.0 dataset for brevity. The performance of studied
APR techniques on these two datasets in terms of the genuineness
metrics are shown in Table 5.

According to the results of the ratio change for both metrics in
Table 5, most of the studied APR techniques exhibit a significant
decrease in performance. Notably, 9 out of 12 APR techniques ex-
hibit a drop in the ratio of both metrics. Among them, Recoder,
SelfAPR, TBar, and PraPR experience a decrease of more than 50%
in both ratios, indicating potential overfitting issues. Although
Edits and Tufano exhibit increases in both ratios, the observed
changes are not statistically significant due to their relatively small
absolute numbers. It is worth noting that, AlphaRepair shows a
77.18% increase in the ratio of genuine patches and only a 14.01%
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decrease in the ratio of correctly fixed bugs. Such results not only
reaffirm the overfitting issues on Defects4J V1.2.0 identified in prior
works [12, 14, 59] but also underscore the adaptability and general-
ization ability of the LLM-based APR, especially when confronted
with a new benchmark featuring a diverse range of bugs.

Finding 2: All of the traditional techniques and six out of
nine learning-based techniques exhibit overfitting issues
on the Defects4J V1.2.0 dataset. Notably, the LLM-based
AlphaRepair demonstrates better adaptability and generaliz-
ability concerning overfitting issues.

4.1.3 Correlation between Plausible/TCE/SYE and Genuine Patches.
As genuineness metrics are usually expensive to obtain (requiring
patch validation and manual patch correctness checking), we fur-
ther investigate whether other metrics can serve as alternatives to
them. Specifically, we perform the Pearson Correlation Coefficient
analysis [41] on plausible/TCE/SYE metrics and genuineness met-
rics, where the results are shown in Figures 2, 3, and 4. The diagram
on the left of each figure shows the correlation between the ratio
of plausible/TCE/SYE patches and the ratio of genuine patches, and
the diagram on the right shows the correlation between the ratio
of bugs with plausible/TCE/SYE and genuine patches.

According to Figures 2, 3, and 4, the metrics of TCE/SYE/plau-
sibility are all highly correlated to the genuineness metrics and
the correlations are statistically significant at the significance level
of 0.05, which implies that all of TCE/SYE/plausible metrics can
potentially become good alternatives to genuineness metrics for
APR evaluation. By comparing Figure 3 and Figure 4, it is obvi-
ous that the TCE metrics have a stronger correlation than the SYE
metrics. Moreover, we can observe that the TCE metrics and the
plausibility metrics have a similarly strong correlation with the
genuineness metrics. However, after calculating the ratio of the
total number of bugs with plausible/TCE/SYE patches to the total
number of bugs with genuine patches, we find that the ratio for
TCE (89.40%) is closer to 100% than those for plausibility (156.76%)
and SYE (80.45%), which implies that the TCE metrics are the most
cost-efficient alternative among other metrics to approximate gen-
uineness metrics, given their high accuracy and efficiency (does
not require test execution or manual patch correctness checking).

Finding 3: The SYE/TCE/plausibility metrics are all highly
correlated to the genuineness metrics. Among them, TCE
metrics serve as the most cost-efficient alternative for gen-
uineness metrics, due to their higher accuracy than both
SYE and plausibility metrics, and lower computational cost
than plausibility metrics.

4.2 RQ2: Performance on the MuBench
benchmark

4.2.1 Overall Results. The overall performance of APR techniques
is shown in Table 6, following the same format as Table 4. Note that
due to the large number of plausible patches, it is impractical to
manually inspect them. Instead, we use the TCE metrics to approx-
imate the genuineness metrics as demonstrated in Section 4.1.3.

Figure 2: The correlation of plausible and genuine metrics

Figure 3: The correlation of TCE and genuine metrics

Figure 4: The correlation of SYE and genuine metrics

The overall results are similar to the Defects4J benchmark: TBar
has the highest compilability rate, SelfAPR has the most plausi-
ble/SYE/TCE patches while AlphaRepair attains the most number of
bugs with plausible/SYE/TCE patches. The consistent results across
both benchmarks underscore the potential of the mutation-based
benchmark as an alternative for large-scale APR evaluations, espe-
cially considering the inherent challenges of creating real-world
bug benchmarks – the extensive effort required and the limited
bug numbers. However, this study concentrates on analyzing APR
techniques’ performance on simple mutation bugs, deferring the
generation of realistic mutation bugs for future research. Addition-
ally, the compilable patch rates on MuBench show a substantial
increase for most of the studied APR techniques compared to De-
fects4J benchmark, indicating that it is easier to generate compilable
patches for simpler bugs in the MuBench benchmark.

It is also worth noting that most of the learning-based APR
techniques perform better than all the traditional techniques in
terms of the number of bugs with TCE patches. Such results show
that learning-based APR techniques can handle simple bugs in
the MuBench benchmark much better than the traditional ones,
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Table 6: The performance of APR techniques on the MuBench benchmark
Metrics Learning-based Techniques Traditional Techniques

Recoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR
# Total Patches 148493 170000 169900 170000 125932 160000 168100 169800 170000 92902 114481 17651

# Compilable Patches 55173 (37.16%) 80334 (47.26%) 72254 (42.53%) 81055 (47.68%) 40181 (31.91%) 46981 (29.36%) 56950 (33.88%) 3117 (1.84%) 19305 (11.36%) 62472 (67.25%) 50546 (44.15%) N/A
# Plausible Patches 3415 (2.30%) 15529 (9.13%) 11305 (6.65%) 8220 (4.84%) 3721 (2.95%) 4136 (2.59%) 4731 (2.81%) 339 (0.20%) 1012 (0.60%) 4088 (4.40%) 785 (0.69%) 1347 (7.63%)

# Bugs w/ Compilable Patches 1654 (97.29%) 1594 (93.76%) 1650 (97.06%) 1678 (98.71%) 1593 (93.71%) 1551 (91.24%) 1518 (89.29%) 698 (41.06%) 878 (51.65%) 1681 (98.88%) 1335 (78.53%) N/A
# Bugs w/ Plausible Patches 803 (47.24%) 1020 (60.00%) 1125 (66.18%) 947 (55.71%) 742 (43.65%) 615 (36.18%) 672 (39.53%) 185 (10.88%) 203 (11.94%) 637 (37.47%) 277 (16.29%) 649 (38.18%)

# TCE Patches 855 (0.58%) 11896 (7.00%) 2689 (1.58%) 2884 (1.70%) 1017 (0.81%) 1123 (0.70%) 1109 (0.66%) 118 (0.07%) 229 (0.13%) 380 (0.41%) 179 (0.16%) 216 (1.22%)
# SYE Patches 257 (0.17%) 11273 (6.63%) 1175 (0.69%) 2171 (1.28%) 342 (0.27%) 777 (0.49%) 643 (0.38%) 100 (0.06%) 107 (0.06%) 341 (0.37%) 161 (0.14%) N/A

# Bugs w/ TCE Patches 761 (44.76%) 1157 (68.06%) 1194 (70.24%) 955 (56.18%) 708 (41.65%) 561 (33.00%) 664 (39.06%) 106 (6.24%) 144 (8.47%) 376 (22.12%) 173 (10.18%) 216 (12.71%)
# Bugs w/ SYE Patches 244 (14.35%) 1128 (66.35%) 1165 (68.53%) 915 (53.82%) 342 (20.12%) 542 (31.88%) 643 (37.82%) 100 (5.88%) 107 (6.29%) 341 (20.06%) 161 (9.47%) N/A

*The percentages in the parentheses denote the ratio of the number of patches to the total number of generated patches for the # Compilable/Plausible/TCE/SYE Patches metrics and the ratio of the number
of bugs to the total number of bugs for the # Bugs w/ * Patches metrics. The largest/highest number/ratio in each row is highlighted in bold font.

while such advancement is not significant on the Defects4J bench-
mark. Another key observation is that, even though the bugs in
the MuBench benchmark are relatively simple, the best-performing
technique, AlphaRepair, can only produce TCE patches for 70.24%
of these bugs, underscoring the potential for enhancement in the
current state-of-the-art APR techniques.

Finding 4: Most of the learning-based APR techniques
can better handle the simpler bugs in the MuBench bench-
mark than the traditional ones. However, even the best-
performing AlphaRepair only manages to yield TCE patches
for 70.24% of the bugs, highlighting the necessity to increase
APR techniques’ proficiency in fixing simple bugs to make
them more applicable in practical scenarios.

Figure 5: Correlation of com-
pilable and genuine metrics

4.2.2 Performance in Terms
of Mutators. To better under-
stand APR technique perfor-
mance on different bug types
in the MuBench benchmark,
we uniformly sample 100 mu-
tants per mutator to collect
700 bugs in total and evaluate
the number of bugs with TCE
patches for each APR tech-
nique. The results are shown
in Table 7.

As shown in Table 7, over-
all the learning-based APR
techniques perform best at fixing LVR bugs, likely due to the sim-
plicity of the LVR mutation, such as substituting numeric values
and toggling boolean literals. Meanwhile, the traditional APR tech-
niques perform worse than most of the learning-based techniques
on LVR, showing the superiority of learning-based APR techniques
in synthesizing literals. On the other hand, the traditional APR
techniques outperform most of the learning-based techniques at
fixing LOR bugs. A potential reason for this could be that the effi-
cacy of the learning-based techniques on bugs generated by specific
mutators is heavily dependent on the recurrence of analogous fix
patterns in the training dataset, and LOR appears less frequently
in the training data. At the same time, template-based approaches
have integrated corresponding templates for such bugs.

Additionally, among the learning-based APR techniques, Al-
phaRepair, RewardRepair, SequenceR, CURE, Edits and Tufano all
have the worst performance for the bugs generated by the mutator
SOR. Such results are possibly because the frequency of the fix

pattern of operator replacement is relatively low in their training
dataset, especially for shift operators. In contrast, SelfAPR is not
affected as it is trained on the perturbed correct versions of the
buggy programs, which provide more opportunities to see similar
fix patterns. Additionally, template-based APR techniques may also
overlook corresponding templates for these operators due to their
rarity in the data. For example, although TBar has introduced a
fix pattern “Mutate Operators”, it does not implement the operator
mutation for shift and unary operators. As a result, it generates
zero TCE patch for ORU and SOR bugs.

We also find that most learning-based and traditional APR tech-
niques (except for SelfAPR and AlphaRepair) struggle to handle
the COR mutator. This is because the COR mutator can reduce
complex conditional expressions into boolean literals (i.e., true and
false), making it challenging to recover the original conditions.
While SelfAPR performs well due to its project-specific training,
AlphaRepair performs the best on COR mutants due to the power
of large language models in synthesizing boolean expressions.

The results that the traditional and learning-based APR tech-
niques perform better in different bug categories indicate the po-
tential benefits of integrating traditional and learning-based ap-
proaches to complement each other’s weaknesses. Notably, some
existing works [52, 64] have already yielded encouraging outcomes
in such a collaborative approach.

Finding 5: Learning-based APR techniques are better at
synthesizing literals, while traditional APR techniques are
better at replacing rare operators. Such observation suggests
the potential advantages of integrating these two types of
APR techniques, leveraging their respective strengths to
mitigate each other’s limitations.

4.3 RQ3: Additional insights for better APR
In this section, we will discuss the additional insights we have
gathered in our evaluation, to inspire future APR research.

4.3.1 Patch Compilability.
Correlation between patch compilability and the number

of bugs fixed. Intuitively, producing more compilable patches
suggests that the APR technique hasmore valid attempts to generate
patches that pass the test suites, leading to more fixed bugs. To
validate such an assumption, we conduct a correlation analysis
between these two variables. The analysis in Figure 5 reveals a
statistically significant correlation (𝑝 < 0.05) between the number
of compilable patches and correctly fixed bugs, validating numerous
APR works’ efforts to improve patch compilability [18, 61, 62, 66].
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Table 7: The performance of APR techniques in terms of different mutators.

Mutator Learning-based Techniques Traditional Techniques #BugsRecoder SelfAPR AlphaRepair RewardRepair SequenceR CoCoNut CURE Edits Tufano Tbar SimFix PraPR
AOR 59 70 70 59 50 37 37 4 3 21 2 16 100
COR 10 50 57 19 8 2 11 0 1 3 4 0 100
LOR 39 55 5 27 16 20 21 1 5 44 15 76 100
LVR 74 84 74 79 72 62 57 19 17 19 16 12 100
ORU 34 60 5 53 15 33 25 1 7 0 2 0 100
ROR 30 68 74 46 37 16 37 0 6 38 14 6 100
SOR 39 54 2 9 1 10 8 0 0 0 3 67 100

*Each cell represents the number of bugs with TCE patches for each APR technique. The largest number in each row is highlighted in bold, and the largest number in each column is underlined.

Table 8: The categories of compilation errors of studied APR techniques on the MuBench benchmark.
Compilation Error Learning-based Techniques Traditional Techniques TotalRecoder SelfAPR AlphaRepair RewardRepair Sequencer CoCoNut CURE Edits Tufano Tbar SimFix
cannot find symbol 11809 27719 63359 33749 22783 26014 16048 31235 13727 8341 48305 303089

... expected 20041 21294 4695 11272 13192 11038 19183 34533 58534 134 3552 197468
illegal start of expression 6668 12136 4181 9998 7945 6963 19737 77050 28968 32 3904 177582
unclosed character literal 0 903 381 331 263 42373 16018 235 0 0 592 61096

incompatible types 9391 2157 2102 3027 7144 1552 3587 2403 6531 904 679 39477
bad operand ... for

(binary|unary) operator 10587 2858 1682 2714 7376 2096 3958 305 2529 3202 255 37562

not a statement 1422 3285 1598 7234 5417 639 2683 3735 4373 28 179 30593
incomparable types 6677 1610 1969 2115 5373 1818 3490 0 2858 1888 258 28056

(method|constructor) ... cannot
be applied to given types 4587 1707 2065 1860 3879 2076 3726 261 4703 1903 402 27169

illegal start of type 2613 2320 786 2485 301 58 5318 5888 5779 1 5 25554
Total (Semantic Error) 43051 (58.34%) 36051 (47.44%) 71177 (85.94%) 43465 (58.12%) 46555 (63.19%) 33556 (35.46%) 30809 (32.86%) 34204 (21.98%) 30348 (23.71%) 16238 (98.81%) 49899 (85.84%) 435353
Total (Syntactic Error) 30744 (41.66%) 39938 (52.56%) 11641 (14.06%) 31320 (41.88%) 27118 (36.81%) 61071 (64.54%) 62939 (67.14%) 121441 (78.02%) 97654 (76.29%) 195 (1.19%) 8232 (14.16%) 492293

Total 73795 75989 82818 74785 73673 94627 93748 155645 128002 16433 58131 927646

Finding 6: The patch compilability rate is highly correlated
to the number of bugs being correctly fixed, suggesting that
enhancing the patch compilability may lead to more valid
fix attempts and potentially more fixed bugs.

Strategies used to improve compilability.AmongNMT-based
APR techniques, Recoder, SelfAPR, RewardRepair, and CURE have
the highest compilability rates on both benchmarks, each employ-
ing a specific strategy to improve compilability. Specifically, Re-
wardRepair uses a compilability discriminator, SelfAPR includes
uncompilable perturbed programs in its training dataset to avoid
generating uncompilable patches, Recoder selects compatible iden-
tifiers, and CURE utilizes pre-trained language models with a code-
aware beam-search strategy. In contrast, TBar maintains high com-
pilability by employing template designs likely to preserve syntactic
validity. Despite using varied strategies, learning-based techniques
lag behind TBar’s compilability rate in all benchmarks, suggesting
a need for future research to boost patch compilability in learning-
based APR techniques.

Finding 7: The various compilability improvement strate-
gies adopted by studied learning-based APR techniques can-
not surpass the compilability achieved by straightforward
template-based mutation. This suggests improving the patch
compilability of learning-based APR techniques through
more effective syntactic-validity-preserving strategies.

Compilation error categorization. To gain insights into the
factors limiting the studied techniques in generating compilable
patches, we analyze the compilation errors of uncompilable patches
generated on the large-scale MuBench benchmark. Table 8 lists
the top 10 errors with a heatmap indicating their frequency. Note
that the data for PraPR is not included as PraPR generates patches
at bytecode-level, eliminating the need for compilation. The Java

compiler (javac) can pinpoint both syntactic and semantic errors,
with the latter marked in green background color in the first column
of the table. Note that syntactical validity is a basic requirement for
compilability, and comparing the proportion of the syntactically
valid patches to the semantically valid ones can help gauge the
progress of an APR method in improving patch compilability.

The common error across all techniques is the cannot find sym-
bol error, indicating a lack of context understanding for accessible
identifiers. AlphaRepair and TBar show the lowest syntactic er-
ror rates (14.06% and 1.19%) among learning-based and traditional
techniques, thanks to large language model basis and AST-based
mutation operations. Notably, with a syntactical error rate of 14.16%,
SimFix ranks third, closely trailing AlphaRepair. Recoder and Re-
wardRepair both have more than 40% syntactical errors. Despite
Recoder’s effort to pick type-compatible identifiers, it still faces 9391
(12.73%) incompatible types issues. On the other hand, CoCoNut
and CURE generate a large number of uncompilable patches due
to unclosed character literal errors, reflecting wasted patch explo-
ration, even though CURE employs a pre-trained language model.
Moreover, Edits and Tufano have major syntactic issues like miss-
ing symbols and incorrect Java syntax usage, possibly due to their
smaller training datasets.

Finding 8: Examining compilation errors of generated
patches can reveal bottlenecks in generating compilable
patches. Traditional APR techniques are generally more ef-
fective at avoiding syntactic errors in patches than learning-
based APR techniques. The most frequent compilation error
cannot find symbol indicates that many state-of-the-art APR
techniques struggle to generate valid identifiers.

4.3.2 Duplicate and No-op Patches. Besides patch compilability,
we examine duplicate and no-op patches generated by the studied
APR techniques. Duplicate patches are syntactically equivalent to



ISSTA ’24, September 16–20, 2024, Vienna, Austria Yicheng Ouyang, Jun Yang, and Lingming Zhang

Table 9: The statistic of duplicate/no-op patches on the MuBench benchmark.

Metrics Learning-based Techniques Traditional Techniques
Recoder SelfAPR AlphaRepair RewardRepair Sequencer CoCoNut CURE Edits Tufano Tbar SimFix

# Duplicate patches 2902 (1.95%) 67453 (39.68%) 443 (0.26%) 37284 (21.93%) 5 (0.00%) 4654 (2.91%) 57 (0.03%) 136 (0.08%) 25836 (15.20%) 21 (0.02%) 4830 (4.22%)
# No-op patches 996 (0.67%) 5119 (3.01%) 877 (0.52%) 4020 (2.36%) 750 (0.60%) 1746 (1.09%) 1162 (0.69%) 402 (0.24%) 345 (0.20%) 94 (0.10%) 4 (0.00%)

# Bugs with duplicate patches 887 (52.18%) 1700 (100.00%) 47 (2.76%) 1685 (99.12%) 3 (0.18%) 741 (43.59%) 13 (0.76%) 31 (1.82%) 1169 (68.76%) 5 (0.29%) 215 (12.65%)
# Bugs with no-op patches 817 (48.06%) 928 (54.59%) 839 (49.35%) 1479 (87.00%) 750 (44.12%) 1277 (75.12%) 1162 (68.35%) 402 (23.65%) 345 (20.29%) 94 (5.53%) 4 (0.24%)

previously generated patches, while no-op patches are syntactically
equivalent to the original buggy program, wasting computational
resources without improving patch diversity. We employ the SYE
metrics, i.e., comparing tokenization results to determine syntactical
equivalence, to identify such patches generated on the MuBench
benchmark. The analysis results are shown in Table 9.

The results show that SelfAPR has the most significant patch
duplication issue with about 40% duplicate patches, and it gener-
ates at least one duplicate patch for each bug. RewardRepair and
Tufano also have high duplication rates of 21.93% and 15.20% re-
spectively, with 99.12% and 68.71% bugs associated with duplicate
patches. SelfAPR leads with a 3.01% rate of no-op patches, while
RewardRepair has the highest ratio of bugs with no-op patches at
87.00%. Although duplicate and no-op patches may not directly
hinder the effectiveness of APR techniques, they can consume com-
putational resources and limit the exploration of diverse patches.
Identifying such patches beforehand can save costs on unnecessary
patch validation and manual correctness checking.

Finding 9: Four out of nine learning-based APR techniques
incur more than 40% of bugs having duplicate/no-op patches,
highlighting the opportunity for corresponding optimiza-
tion techniques to enhance the efficiency and reliability of
learning-based APR techniques.

4.3.3 Implementation Issues. Our extensive evaluation aids in iden-
tifying implementation issues in the studied APR techniques, es-
pecially on the large-scale MuBench benchmark. There are mainly
two types of issues: 1) some APR techniques underperform, e.g.,
failing to fix certain bugs that should have been fixed, and 2) cer-
tain techniques crash when trying to repair certain bugs, exposing
potential implementation issues.

Inferior performance. For instance, Recoder aims to use only
feasible identifiers—identifiers accessible in the local context and
meeting type constraints—to substitute original identifiers. Yet, as
Section 4.3.1 notes, it leads to 11809 and 9391 compilation errors
from cannot find symbol and incompatible types, accounting for
28.73 % of all its compilation errors. To probe the cause, we ex-
amine the error-inducing patches generated by Recoder. Listing 1
shows a patch by Recoder, replacing literals ‘0’ and ‘9’ with “null”,
and str.charAt(i)with str.getDurationMillis(i), leading to
compilation errors since > cannot be applied to a String, and get-
DurationMills is not a String method. Upon inspecting Recoder’s
source code, we find that it does not always fully guarantee the
feasibility of identifiers, i.e., well-typedness and accessibility.

In another case, TBar, designed to include the Mutate Literal
Expressionmutator (altering literals to other correspondingly-typed
literals or expressions), merely fixes 19 out of 100 LVR bugs. For
instance, it fails to fix the simple bug illustrated in Listing 2. Upon
reviewing its generated patches, we find that instead of substi-
tuting with other integer values, it solely substitutes the integer

literals with double/float literals of the same value. Additionally,
we found that TBar does not implement the functionality to replace
String/Character literals, although it is expected to do so. Similarly,
PraPR only fixes 12 LVR bugs, attributed to its restrictive literal
replacement pattern, such as only mutating int literal i to either 0
or i+1 for numeric literals mutation.
Listing 1 Example patch of Recoder
...
- if(str.charAt(i) > '0' && str.charAt(i) <= '9'){
+ if(((str.charAt(i) > "null") && (str.getDurationMillis(i) <=

"null"))){↩→
...

Listing 2 Example LVR bug that TBar failed to fix
...
- if (contains(value, index + 2, 1, "I", "E", "H") &&
+ if (contains(value, index + 2, -1, "I", "E", "H") &&
...

Listing 3 Buggy pre-processing code snippet of Recoder
# Recoder testone.py
if mode == 1:

# aftercode represents the subsequent context
aftercode = oldcode + aftercode

lines = aftercode.splitlines()
if 'throw' in lines[0] and mode == 1: # IndexError

for s, l in enumerate(lines):
...

Crashing in repairing. Some techniques crash while attempt-
ing to fix certain bugs. For example, Listing 3 shows a faulty code
snippet from the pre-processing script of Recoder, aiming to ex-
tract the context following the buggy line within the same method.
However, if the buggy line encompasses the entire method, such
as int sum(int a, int b){return a+b;}, the script will crash
as aftercode and lines turn empty, causing lines[0] to trigger
IndexError. This bug was confirmed and fixed by its authors. In
total, we have identified seven issues in AlphaRepair, SequenceR,
SimFix, TBar, Recoder, and CoCoNut, with five confirmed and fixed
by their authors. The list of issues can be found in our artifact [3].

Finding 10: Our multi-dimensional evaluation and analyses
have revealed seven implementation issues (with five con-
firmed and fixed by corresponding authors) in six studied
APR techniques.

5 THREATS TO VALIDITY
The threats to external validity mainly lie in the limited number of
benchmarks used for the evaluation and the generalizability of the
evaluation results. Therefore, besides the Defects4J benchmark, we
also build the mutation-based MuBench benchmark that contains
1,700 bugs generated by various mutators, larger than prior indi-
vidual benchmarks for APR evaluation. Another concern is that
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the MuBench benchmark constructed with 7 mutators might not
accurately represent real-world bugs, thus results from it may not
genuinely reflect the capabilities of the assessed APR techniques.
To address this concern, in this paper, we utilize MuBench bench-
mark results solely to analyze the characteristics of the techniques
evaluated. Another threat lies in the potential data leakage issue
in learning-based APR techniques. To mitigate this threat, we care-
fully review the studied techniques to ensure they handled the
data leakage issue properly. Moreover, the MuBench benchmark
we create further alleviates such an issue by introducing new bugs
through program mutation.

Threats to internal validity mainly lie in the usage of APR tech-
niques and the manual patch inspection process. Thus, we meticu-
lously adhere to the instructions provided in each APR technique’s
README file and proactively communicate with the authors if any
procedure is unclear. Additionally, we ensure the accuracy of man-
ual patch inspection by engaging two authors experienced in Java
development to independently verify the correctness of the patches.

The threats to the construct validity mainly lie in the metrics
used. Thus, we include the metrics that have been used in previous
works such as compilability, plausibility, and genuineness metrics.
For newly introduced metrics , i.e., SYE and TCE metrics, we per-
form correlation analyses to show that they are highly correlated
to the genuineness metrics.

6 CONCLUSION
In this study, we comprehensively evaluate nine learning-based and
three traditional APR techniques employing the Defects4J bench-
mark, alongside the substantial mutation-based MuBench bench-
mark consisting of 1,700 artificial bugs. Our analyses of the 1,814,652
generated patches utilize multi-dimensional metrics including com-
pilability, plausibility, SYE, TCE, and genuineness metrics, which
allow for an in-depth understanding of the capabilities and areas of
improvement for the studied APR techniques. Our comprehensive
evaluation leads to multiple findings. For instance, LLM-based APR
is generally less prone to overfitting compared to NMT-based and
traditional techniques. TCE metrics could be used as cost-efficient
alternatives for genuinenessmetrics for large-scale APR evaluations.
All studied learning-based techniques lag behind template-based
techniques in producing compilable patches. Additionally, many
studied learning-based techniques suffer from the issue of gen-
erating duplicate/no-op patches which could burden their repair
effectiveness. We also provide valuable insights for future research,
including: the need for equitable evaluation settings (e.g., uniform
candidate patch numbers and patch generation mechanisms); the
potential benefits of integrating traditional and learning-based tech-
niques to capitalize on their respective strengths in fixing different
types of bugs; and the importance of improving patch compilability
to yield more valid fix attempts and correct bug fixes. Moreover,
our study reveals seven implementation issues within the studied
APR techniques, and five of them were confirmed and subsequently
fixed by the respective authors.
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